

National Harbor, MD October 1-5, 2017

Gaylord National Resort and Convention Center

CarbonXS GUI -A Graphical Front End for CarbonXS

Lok-kun Tsui¹ and Fernando Garzon^{1,2} 2016-10-02 ¹Center for Micro-Engineered Materials, University of New Mexico ²Sandia National Laboratories

Sandia National Laboratories

- Motivation: X-ray analysis of disordered carbons
- The CarbonXS Model
- CarbonXS GUI
- Examples of using CarbonXS GUI to analyzing non-PGM fuel cell catalysts developed at UNM CMEM

Why X-ray Diffraction for Disordered Carbons?

- Disordered carbons are used in a wide variety of applications:
 - Battery and fuel cell electrodes
 - Catalysts and catalyst supports
- Quantitative analysis allows for correlation of structural properties with performance parameters.
- TEM: high resolution imaging and quantitative measurements but limited small spatial sampling extent.
- XRD: Quantitative averaging over the entire sample.

Diffraction pattern of disordered carbon

Structure of disordered carbons

- Traditional XRD analysis software uses a 3D model when a 2D model is more appropriate for carbon which are composed of stacked sheets.
- Disordered Carbons (DCs): Exhibit random inter-planar shifts and rotations, known as Turbostratic Disorder
- Scattering from each grain of carbon originates from multiple sub-grains that scatter incoherently wrapped with high-strain carbon [1, 2].
 - Calculation using traditional Scherrer equation techniques yields smaller than realistic grain sizes.
 - Surface area is much higher compared to BET area.

Disordered Turbostratic Carbon

- 1. Franklin, R. E. Proc. R. Soc. A Math. Phys. Eng. Sci. 1951, 209 (1097), 196–218.
- 2. H. Shi, J. N. Reimers, and J. R. Dahn, J. Appl. Crystallogr., 26, 827–836 (1993).

The CarbonXS Model

- Calculate scattering from stacked layers of carbon (ordered regions) with a gaussian distribution of random stacking (disordered regions).
- Models the scattering from rods in reciprocal space and integrates the signal observed over all scattering angles.
- **One layer model**: Highly disordered carbons with a distribution of shifts in layer spacing.
- **Two layer model**: Accounts for preferential ABABAB type stacking in highly graphitized carbons. (60%+ graphite)
- Shi implemented this model in software and determined the structural properties of dozens of different types of carbons from heat treatment of petroleum sources [1].
- Subsequently used to study materials for Li-ion batteries [2], coal gasification [3], and FC catalysts [4].

- 1. H. Shi, J. N. Reimers, and J. R. Dahn, J. Appl. Crystallogr., 26, 827–836 (1993).
 - 2. Zheng, T.; Reimers, J. N.; Dahn, J. R. Phys. Rev. B 1995, 51 (2), 734-741.
 - 3. Feng, B.; Bhatia, S. K.; Barry, J. C. Carbon 2002, 40 (4), 481-496.
- 4. Workman, M. J.; Serov, A.; Tsui, L.; Atanassov, P.; Artyushkova, K. ACS Energy Lett. 2017, 1489–1493.

Model Optimization

- Iterative optimization model
- Inputs:
 - Diffraction Pattern Y(θ)
 - Initial Fitting Parameters W_i
 - Diffractometer and sample geometry, radiation wavelength
- Minimize the χ² error between the calculated and experimental diffraction patterns.
- Nonlinear optimization of W_i is performed using the Levenberg-Marquardt algorithm.
- For each iteration, stop if Δχ² < user specified ε or if maximum number of iterations are exceeded.
- Outputs optimized parameters and calculated final pattern.
- Typical runtime: < 20 seconds on a modern CPU (Intel i5).

CarbonXS (The Fortran Program)

Limitations of CarbonXS:

- Written in 1990s in Fortran 77
- Input and output are both text.
 Requires separate plotting program.
- Diffraction geometry, fit settings, optimization parameters are tightly coupled.
- XRD data files must be configured to the expected format.
- Command line only.

Objectives for CarbonXS GUI:

- Provide a graphical interface for CarbonXS.
- Improve UI and UX.
- Get it to run on modern platforms.
- Support importing of typical XRD data files.
- Minimal modification to CarbonXS other than compatibility and bug fixes – Preserve numerical reproducibility.

NINGW64:/				
c LKTSUI@LKTSUI XSGui_v1.3.1- \$ cd carbonxs	KTSUI@LKTSUI-PC MINGW64 ~/Dropbox/research/programs/CarbonXSGui/versions/Carbon SGui_v1.3.1-windows (master) cd carbonxs			
LKTSUI@LKTSUI XSGui_v1.3.1-	<pre>KTSUI@LKTSUI-PC MINGW64 ~/Dropbox/research/programs/CarbonXSGui/versions/Carbon KSGui_v1.3.1-windows/carbonxs (master)</pre>			
carbon.cmn c carbon.dat C carbon.inp c	arbon.out ARBONXS.FOR arbonxs_gfortran.	compiling.txt libwinpthread-1.dll* libgcc_s_seh-1.dll* SCAN.DAT exe* libquadmath-0.dll*		
LKTSUI@LKTSUI-PC MINGW64 ~/Dropbox/research/programs/CarbonXSGui/versions/Carbon XSGui_v1.3.1-windows/carbonxs (master) \$./carbonxs_gfortran.exe Title in data file :No title in your data file!!! Data file name :SCAN.DAT Lambda : 1.54180 # of raw data pts : 2001 Raw theta limits : 10.00 to 90.00 # of data pts used : 2001 Theta limits used : 10.00 to 90.00 Max # of it's : 100 Min delta Chi^2 : 0.00100 # of pts in TCI : 10 Tarage : +/- 3 Sigma Relative Density : 0.500 Stacking Model : 1 layer Goniometer Radius :205.000(mm) X-ray Beam Width : 1.500(mm)				
Iter # Ch 1 .649 2 .646 3 .637 4 .637	i^2 Alambda 42E+01 0.10E-01 65E+01 0.10E-02 27E+01 0.10E-03 27E+01 0.10E-02			
5 .637 6 .626 7 .626 8 .626 9 .626 9 .626 10 .626 11 .626	27E+01 0.10E-01 26E+01 0.10E-02 26E+01 0.10E-02 26E+01 0.10E+00 26E+01 0.10E+01 26E+01 0.10E+01 26E+01 0.10E+01			
Final Parame Old Value 0.469000E+05	ters New Value 0.515723E+05	(esd) Description (0.465523E+05) Scale Factor (a.u.)		
0.801724E+04	0.835931E+04	(0.324566E+03) Background Constant		
459593E+04	551100E+04	(0.179214E+04) Background S		
317152E+04	292205E+04	(0.441575E+04) Background S^2		
0.777594E+03	0.189472E+04	(0.491679E+04) Background S^3		
0.304651E+04	0.227382E+04	(0.201962E+04) Background S^4		
0.372066E+02	0.189339E+02	(0.236459E+02) Background 1/S		
0.243224E+01	0.243283E+01	(0.985751E-03) A, In Plane Cell Constant (Angstro		
0.342658E+01	0.342573E+01	(0.338271E-03) d002, Interlayer Spacing (Angstrom		
) 0.318558E+03	0.282656E+03	(0.250096E+03) La, Coherence Length		
0.885524E+02	0.108864E+03	(0.254755E+02) M, Number of Layers	v	

CarbonXS on the Command Line

CarbonXS GUI – Version 1.3.1 (June 2017) 🦱

- Recompiled with GNU GFortran, a modern
 Fortran compiler for modern operating systems.
- Powered by: <a>Python
- Crossplatform¹: Windows, Linux, Mac OSX
- Available for free on our Github page
- Open Source Software

Download at <u>https://github.com/lktsui/carbon_xs_gui</u> Documentation at <u>https://lktsui.github.io/carbon_xs_gui</u>

New Features of CarbonXS GUI

- Graphing: Showing the original data, background function, and fit result without needing a separate plotting software.
- **Calculation Mode**: Simulate diffraction pattern without needing to perform a fit. Useful for parameter adjustment.
- Decoupled Configuration Files: Exports and imports parameters, fit settings, and diffractometer settings from JSON data files for easier data exchange.
- Fit calculation buffer:
 - Undo a bad fit.
 - Step back and forth between fit results.
- Import formats supported:
 - 2 column data, Jade MDI format, Rigaku RAS, X-Y
- **Input Checking**: Alerts the user if they are inputting nonsensical parameters.

Flowchart of Optimization Mode

Influence of number of layers on catalytic activity

- Motivation: Non-PGM catalysts for less expensive fuel cell catalysts than Pt.
- High surface area Fe-N-C catalyst was synthesized by pyrolysis of organic and metal-salt precursors.
- Fewer coherent layers yielded higher current density at a test potential and OCV.
- Implied that active sites were on the plane rather than edges of plates.
- Fewer layers meant more planar area exposed per unit mass.

From: M. J. Workman, A. Serov, L. Tsui, P. Atanassov, and K. Artyushkova, ACS Energy Lett., 1489–1493 (2017)

Dual Refinement: Carbon + Metal

- Catalyst prepared by hydrothermal synthesis with Fe particles embedded in a carbon matrix.
- CarbonXS cannot directly be used to analyze materials containing both carbon and metal phases.
- Dual refinement procedure:
 - Treat the carbon signal as background and use JADE to perform whole pattern fitting for the metal phase.
 - Subtract the metal peaks to obtain the residual carbon pattern.
 - Perform the carbon analysis with CarbonXS GUI

From: R. Gokhale, L. Tsui, K. Roach, Y. Chen, M.M. Hossen, K. Artyushkova, F. Garzon, P. Atanassov, "Hydrothermal synthesis of platinum group metal-free catalysts: structural elucidation and oxygen reduction catalysis." Submitted.

Improved fit to carbon peaks after removing Fe

Fit results (Dual Refinement)

FCC-Fe

Lattice parameter: 3.59Å Crystallite size: 12 nm

Carbon

Lateral coherence: 50 nm Vertical coherence: 18 nm

[E-21 Session] Imidazoles-Derived PGM-Free Cathode Catalysts for Oxygen Reduction Reaction R. R. Gokhale, Y. Chen, A. Serov, K. Artyushkova, and P. Atanassov. *Wednesday, 4 October 2017: 09:00*

Conclusions

- We have developed a graphical interface to CarbonXS, significantly lowering the barrier to use for researchers.
- We have demonstrated its application to materials of interest in the field of non-PGM fuel cell catalysts.
- A dual refinement procedure was used for a metal-carbon mixture.
- We invite users to submit requests for features, bug reports, and code contributions to our Github page.

□ Iktsui / carbon_xs_gui ♥ Watch ▼ 1 ★ Star					
<> Code ① Issues 2 ① Pull requests 0 III Projects 0 III Wiki ② Settings	Insights 🗸				
Filters • Q ississue issopen Labels Milestones	New issue				
□ ① 2 Open ✓ 25 Closed Author ▼ Labels ▼	Projects ▼ Milestones ▼ Assignee ▼ Sort ▼				
(i) Keyboard shortcuts requests enhancement help wanted #26 opened on Apr 5 by litsui					
O Add support for importing/exporting XRD data formats enhancement help wanted #11 opened on Feb 24 by liktsui	₩ ₽7				
Q ProTip! Type (p) on any issue or pull request to go back to the pull request listing page.					
© 2017 GitHub, Inc. Terms Privacy Security Status Help	Contact GitHub API Training Shop Blog About				
https://github.com/lktsui	/carbon_xs_gui/				

Acknowledgments

- Original Developers of CarbonXS and Permission to Continue work: H. Shi, J.N. Reimers, J. Dahn.
- Testing: Michael Workman and Mark McArthur
- Funding:

